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Stability of screening solitons in photorefractive media

M. Facão* and D. F. Parker†

School of Mathematics and Statistics, University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JZ, United Kingdom
~Received 28 February 2003; published 18 July 2003!

Normal mode stability of both rectilinear and self-bending photorefractive screening solitons is considered.
In each case, the Evans function procedure is used to investigate stability and to search for internal modes. For
the rectilinear case, a standard Evans function procedure is applied. However, in the self-bending case the
asymptotic form of the eigenvalue problem is a system of Airy equations, instead of the usual system of
constant coefficient differential equations. To overcome this difference, a modified version of the Evans
function method, using Airy functions rather than exponentials, is implemented and applied. The results
confirm stability and give an internal mode pattern in good agreement with full numerical integration.
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I. INTRODUCTION

Photorefractive solitons were predicted in 1992@1# and
were demonstrated one year later@2#. They are distinct
amongst optical solitons in requiring only low power lase
as small asmWs, and elementary experimental apparat
Photorefractive materials are doped electro-optic crystals
have electronic energy levels within the forbidden gap. T
photorefractive effect consists of a reversible change of
refractive index induced by a spatial variation of an opti
field, which is accomplished in two steps: creation of fr
charge by light absorption and charge migration by drift a
diffusion. A photorefractive soliton is a beam that becom
self-trapped through the above mechanism, which may
interpreted as though the beam were inducing its own wa
guide. Several mechanisms are possible, each one leadi
a different kind of photorefractive soliton. Here we focus
the so-calledscreeningphotorefractive solitons. In this type
the photorefractive crystal is subjected to an external volt
orthogonal to the light propagation. The final charge dis
bution in the illuminated region produces a space-cha
electric fieldEsc with polarity opposite to the external field
The change in the refractive index that results from
electro-optic effect is given byDn5n3r effEsc, wheren is the
unperturbed refractive index andr eff is an effective electro-
optic coefficient. In turn, the space-charge field depends o
on the beam power whenever only the drift produced by
external field is important, but depends also on the transv
spatial derivative of the beam power whenever the diffus
mechanism is appreciable. The first case produces symm
beams propagating along rectilinear trajectories and oc
for high external voltage and narrow beams@3,4#. The latter
produces slightly asymmetric beams propagating alon
parabolic trajectory, usually known asself-bendingsolitons,
and occurs for broader beams@5–7#. The only reported sta
bility analysis of theself-bendingsolitons was based o
simulations of the full evolution equation@5,6#. In this work
we investigate their normal mode stability by a method sim
lar to the standard Evans function method@8–10#. Unlike
usual applications, the stability equations do not tend to c
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stant coefficient differential equations away from the bea
but instead they tend to a system of Airy equations. We h
used the Airy functions to develop a modification to t
Evans function method and have applied it in a search
stability eigenvalues of the self-bending solitons.

In Sec. II, we introduce the ordinary differential equatio
obtained from the partial differential equation by a similar
variable reduction and briefly describe the characteristic p
files for the two types of solutions: rectilinear and se
bending. The stability eigenvalue problem is presented
Sec. III, where we prove the stability of the rectilinear bea
using theVakhitov-Kolokolovcriterion. Sections IV and V
are devoted to the Evans function method. First, we find
internal modes of the diffusionless case applying the st
dard version of the method. Then we define a suitable Ev
function for the diffusive case. Its application confirms t
stability and gives the internal modes of the self-bend
solutions. Finally, in Sec. VI, we present the results of n
merical integration of the full evolution equation, which a
in agreement with the normal mode stability analysis.

II. MODEL AND LOCALIZED SOLUTIONS

Using the band transport model of the photorefractive
fect by Kukhtarev and Vinetskii@11,12# to evaluate the
space-charge fieldEsc and considering the change of refra
tive index Dn5n3r effEsc, we arrive at the following equa
tion describing the evolution of the optical field@4,5#:

iqz1qxx2
q

11uqu2
1g

~ uqu2!xq

11uqu2
50, ~1!

whereq, z, x, andg are normalized versions of the comple
beam envelope, propagation distance, transverse spatia
ordinate, and diffusion parameter, respectively.

The above equation admits self-similar solutions hav
h5x22Vz1az2 as a similarity variable~with V anda con-
stants! @7#. Thus, introducing the ansatzq(z,x)
5exp@iu(z,h)#F(h) into Eq. ~1!, with F and u real, and re-
quiring thatF→0 ash→6`, we obtain

F91FB1ah2
1

11F2
1g

2FF8

11F2GF50 ~2!

and
©2003 The American Physical Society10-1
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u~z,h!5~V2az!h1 1
3 a2z32aVz21~V22B!z1C,

~3!

whereB andC are arbitrary parameters. Forg50, the cur-
vature parametera should be equal to 0 and for eachB, there
then exists a family of solutions having peak amplitudem
related toB, throughB5 ln(11m2)/m2. They are symmetrica
about the peak positionh5h0 @3,4#. In the diffusive case,
gÞ0, the curvature parameter is necessarily nonzero.
beam profiles result from the numerical integration of E
~2!, using a shooting method@6,7#. The method uses est
mates obtained from a perturbation procedure based upo
diffusionless profiles (g50). The initial conditions forF
and F8 may be taken from the Airy functions in a way a
ready used by Aleshkevichet al. @13# to treat the diffusive
case of photorefractive solitons, but when the nonlinea
was of the Kerr type.

In the diffusive case, we transform Eq.~2! using ac
5ah1B21 so as to obtain an ordinary differential equati
~ODE! without the parameterB as follows:

F91Fac2
F2

11F2
1g

2FF8

11F2GF50. ~4!

In fact, in the tail region whereF.0, Eq. ~4! transforms to
the Airy equationF92zF50 by the change of variable
z(c)52a1/3c. The only solutions that decay asz→1`
(c→2`) are multiples of Ai(z). At the other extreme, both
Ai( z) and Bi(z) decay algebraically and oscillatorily. Nev
ertheless, numerics on Eq.~4! give us beam profiles with
rapid decay at either side. This suggests that the right ta
F is still in a region of positivez and is picking up the
exponential behavior of Bi(z) for z.0. The algebraically
decaying oscillations should appear in the right tail on

FIG. 1. Three beam profiles forg50.1, corresponding to point
markeds in Fig. 2.
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when uFu is already very small. Hence, the initial condition
for numerical integration of Eq.~4! are chosen as

F~c1!5c1Ai @z~c1!#5e,

F8~c1!52c1a1/3Ai 8@z~c1!#,

wherec1 is an estimate of the left tail position used in th
shooting method. We were able, by adjustingc1, to obtain
localized solutions forg up to 0.2 over a wide range of beam
power N5*2`

` F2dc. Figure 1 shows three of these bea
profiles with different peak amplitudesFmax, for g50.1. For
fixed g, the solutions may be parametrized by the curvat
parametera or by the beam powerN. The dependence ofa
on N is not monotonic but exhibits a maximum~see Fig. 2!.
For largerg, beam profiles have also been computed, but
g50.3, 0.4, and 0.5 the numerical procedure fails to fi
profiles for increasingly wide intervals ofN.

III. NORMAL MODE STABILITY

In order to perform linear stability analysis, we conside
total solution of the form q(z,h)5exp@iu(z,h)#@F(h)
1w(z,h)#, whereF(h) is the real beam profile obtained from
Eq. ~2! and w(z,h) is a small complex perturbation term
Inserting the above form into Eq.~1!, and seeking solutions
in the formw(h,z)5u(h)eilz1v* (h)e2 il* z, we obtain the
following eigenvalue problem:

LS u

v D 5lS u

v D , ~5!

where the operatorL is given by

FIG. 2. Dependence of the curvature parametera on the beam
powerN, for three values ofg.
L5S ]hh1B1ah1g
F2

11F2
]h1r ~h! g

F2

11F2
]h1s~h!

2g
F2

11F2
]h2s~h! 2]hh2B2ah2g

F2

11F2
]h2r ~h!

D

0-2
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STABILITY OF SCREENING SOLITONS IN . . . PHYSICAL REVIEW E68, 016610 ~2003!
andr ands are functions ofh defined in terms ofF andF8
as

r ~h!5
2113gFF81gF3F8

~11F2!2
,

s~h!5
F22gF3F81gFF8

~11F2!2
.

The stability of the diffusionless case (g50 anda50)
may be investigated by the well-knownVakhitov-Kolokolov
criterion @14#, which in this case predicts normal mode s
bility if ]N/]B,0. This condition may be rewritten in th
form N8(m)/B8(m),0, whereN(m) is easily evaluated a
the definite integral,

N~m!5E
0

m mG2dG

Am2ln~11G2!2 ln~11m2!G2
.

The derivativeB8(m) is negative for all positivem and
N(m) is found through the numerical integration to increa
monotonically form in the range (0,40). Results up tom
510 are shown in Fig. 3. Therefore,]N/]B,0 and, accord-
ing to theVakhitov-Kolokolovcriterion, all rectilinear screen
ing solitons are stable.

IV. THE EVANS FUNCTION METHOD APPLIED
TO RECTILINEAR PROPAGATION

The stability problem forg50 and a50 may also be
treated using the Evans function method. We briefly int
duce an approach to the standard Evans function me
applied to this case. Stability system~5! for g50 and a
50 may be written as a system of first-order different
equations given by

dY

dh
5A~h,l!Y, ~6!

whereY5(u uh v vh)T and

FIG. 3. Dependence of beam powerN on the peak amplitudem.
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A~h,l!5S 0 1 0 0

2B2r ~h!1l 0 2s~h! 0

0 0 0 1

2s~h! 0 2B2r ~h!2l 0

D .

As h→6`, r (h)→21, ands(h)→0, thus the matrix op-
erator tends to a constant matrixA`(l). Hence, the
asymptotic system has solutions of the form

Yi
`~h,l!5yi~l!exp@r i~l!h#, i 51, . . . ,4,

where r i(l) are the eigenvalues ofA`(l) given by
6Av6l, with v512B, andyi(l) are the corresponding
eigenvectors. Full problem~6! has four solutionsYi

2 for
which the behavior ash→2` satisfiesYi

2(h,l);Yi
` and

has also four solutionsYi
1 for which the behavior ash→

1` satisfiesYi
1(h,l);Yi

` . Either set of solutions forms a
basis for the solution space to Eq.~6!. Wheneverl belongs
to the setS5$lPR:ulu.v% two of the valuesr i(l) are
purely imaginary and the remaining two are real and of o
posite sign. ForlPS there is necessarily an intersection b
tween the subspace spanned by the three solutions bou
at 1` and the subspace spanned by the three solut
bounded at2`. This set of eigenfunctions corresponds
the continuous spectrum. There are also isolated eigenva
occurring inC\S, for which the eigenfunctions decay expo
nentially in both directions. One example isl50, which is
always an eigenvalue of algebraic multiplicity equal to
This fact is related to the four invariances of evolution equ
tion ~1!, namely, translations inz and inx, Galilean transfor-
mation and constant change of phase. ForlPC\S, there are
always two values ofr i(l) whose real part is positive. Le
us denote them byr j (l) ( j 51,2). The other two, which we
denote byrk(l) (k53,4), have negative real part. An eige
function corresponding to an isolated eigenvalue must b
linear combination ofY1

2(h,l) and Y2
2(h,l) and simulta-

neously a linear combination ofY3
1(h,l) andY4

1(h,l). In
other words, the two pairs of functions should be linea
dependent, that is,

a1Y1
2~h,l!1a2Y2

2~h,l!5a3Y3
1~h,l!1a4Y4

1~h,l!.
~7!

Here we define the Evans function as the determinant wh
columns areYj

2 andYk
1 evaluated, for instance, at the pea

location of F, which, by the translational invariance of th
corresponding ODE@i.e., Eq.~2! with a50, g50], may be
chosen ash50. Thus, the following determinant

D~l!5U A A A A

Y1
2 Y2

2 Y3
1 Y4

1

A A A A
U

(0,l)

~8!

is an analytic function inl, which is equal to 0 if and only if
Eq. ~7! is satisfied, that is, if and only ifl is an eigenvalue of
Eq. ~5!. Moreover, the multiplicity of its 0’s coincides with
the algebraic multiplicity of the eigenvalues. One importa
0-3
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advantage of this method is based on the analyticity
D(l), which permits the use of the argument principle f
counting the 0’s ofD(l) inside a certain region only by
determining the change of argD(l), as D(l) is evaluated
while l moves around the boundary of such a region.

The application of the Evans function method to the sy
metric beams, up to an amplitude ofm56.0, has confirmed
their stability. All the eigenvalues lie on the real axis with
the gap of the continuous spectrum. For small amplitudes
to m51.2, only the zero eigenvalue exists with the expec
algebraic multiplicity equal to 4. Betweenm51.2 andm
51.3, one pair of symmetrically placed eigenvalues emer
from the continuous spectrum and an increase in amplit
makes these eigenvalues move towards the origin. For hi
amplitudes, further pairs of real eigenvalues were obser
For instance, form54.0 there are two nonzero pairs and f
m56.0 there are three nonzero pairs. These nonzero
eigenvalues are characteristic of nonintegrable general
nonlinear Schro¨dinger ~NLS! models and are usually calle
internal modes@15–17#. The eigenfunctions of the nonzer
eigenvalues form54.0 are shown in Fig. 4. The eigenfun
tion corresponding to the pair of eigenvalues lower in m
nitude is symmetric, while the other is antisymmetric.

V. THE EVANS FUNCTION METHOD APPLIED
TO SELF-BENDING BEAMS

The normal mode stability for the diffusive case is le
standard than for the diffusionless case. The numerically
tained profiles forF(c) show rapid decay to 0 in both direc

FIG. 4. Perturbationsu andv that constitute the eigenfunction
corresponding tol50.44 andl50.78 for a solutionF(h) of am-
plitude m54.0.
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tions. Thus, the asymptotic form of eigenvalue problem~5!
for the variablec takes the form of two Airy equations fo
which the independent variables depend on the eigenvalul.
They read

~]z1z12z1!u50, ~]z2z22z2!v50,

where z65a22/3(2ac6l). The variablesz1 and z2 are
complex, sincel may be complex. For fixedl, the domain
of real c transforms into two parallel lines in the comple
plane ofz6 ~see Fig. 5!. The lines lie in opposite half-plane
being at equal distance from the real axis. Changing the
part of l translatesz1 and z2 along the same line and
consequently, relocates the profile in thez6 domains. Chang-
ing the imaginary part ofl translates each line vertically.

For all reall, the two lines lie within the real axis. Th
portions corresponding to@z6(c2),z6(c1)# will be called
the profile domains. The profile locations in thez1 and z2

domains coincide forl50 and are on the positive semiaxi
but as the modulus ofl increases they move apart in opp
site directions. We define two important sets of reall.

~1! S15$lPR:0,ulu,l1%. For lPS1, both profile do-
mains remain on the positive semiaxis and only solutio
having rapid decay in both directions are the candidates
solutions of eigenvalue problem~5!. They should match the
behavior of Ai(z) to the left (c2c* ,0, wherec* is the
peak position! and the behavior of Bi(z) to the right (c
2c* .0). Note that, although Ai(z) is also a bounded func
tion ~with algebraic decay! as z→2` (c→1`), within
and near the profile location it still grows to the left. Henc
we may assert that inS1 the eigenvalues are discrete.

~2! S25$lPR:ulu.l1.0%. For lPS2, one of the pro-
file domains lies on the positive semiaxis and the other
has one or both limits on the negative semiaxis. Here, th
exists an extra possible matching Airy function, which
Ai( z) to the left of the domain that lies in negativez. Hence,
for anylPS2, there exists a bounded solution to Eq.~5! and
we may identifyS2 as the continuous spectrum. We still ma
divide the setS2 in two subsets, namely,S2a5$l1,ulu
,l2% andS2b5$ulu.l2%. They correspond to the cases
the profile domain on the left being either only partially
totally on the negative semiaxis, respectively. The divis
embodies the fact that only forlPS2b are the solutions simi-

FIG. 5. z6 lines and profile domains@z6(c2),z6(c1)# for l
5a2b i .
0-4
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STABILITY OF SCREENING SOLITONS IN . . . PHYSICAL REVIEW E68, 016610 ~2003!
lar to the solutions in the continuous spectrum of the non
fusive case and of other similar systems; that is, they
similar to radiation modes.

In order that an eigenvalue may have nonzero imagin
part, the corresponding solution of Eq.~5! should be
bounded and should decay exponentially in both directio
This is possible if the solution matches the exponentia
decaying Airy functions in each direction. Standard theo
@18# involves three Airy functions Ai0(z) and Ai61(z), each
of which decays exponentially in a 120° sector of thez
plane. In such a sector it is said to berecessive. For certain
regions of thel plane, each of the lociz1(c) andz2(c) as
c→6` remains in a fixed sector asl varies. One such
region is the lower half-plane, which we shall be treati
lie
n

th

er

01661
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later. Thus, numerical integration of the eigenvalue probl
made within such regions needs to involve only a fix
choice of appropriate recessive Airy functions. In the low
half-plane, they are Ai21(z1) as z1→2`, Ai0(z1) as z1

→1`, Ai1(z2) asz2→2`, and Ai0(z2) asz2→1`.
From the above observations, let us define a modifi

Evans function. The stability system may also be written a
system of first-order differential equations as

dY

dc
5A~c,l!Y, ~9!

whereY5(u uc v vc)T and
A~c,l!5S 0 1 0 0

2ac212r 1l 2gF2/~11F2! 2s 2gF2/~11F2!

0 0 0 1

2s 2gF2/~11F2! 2ac212r 2l 2gF2/~11F2!

D . ~10!
-

Eq.
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For lP$l:l5a1b i , b,0%, solutions to the asymptotic
system include the following:

Y1
`~c,l!5„Ai21~z1! 2a1/3Ai218 ~z1! 0 0…T,

Y2
`~c,l!5„0 0 Ai1~z2! 2a1/3Ai18~z2!…T,

~11!

Y3
`~c,l!5„Ai0~z1! 2a1/3Ai08~z1! 0 0…T,

Y4
`~c,l!5„0 0 Ai0~z2! 2a1/3Ai08~z2!…T.

As for the standard Evans function method described ear
we construct two bases of solutions to the full problem, o
set$Yk

1% whose behavior at1` satisfiesYk
1(c,l);Yk

` and
the other set $Yk

2% whose behavior at2` satisfies
Yk

2(c,l);Yk
` . A localized solution exists forl belonging

to the lower half-plane if and only if the determinant

Dai~l!5U A A A A

Y1
1 Y2

1 Y3
2 Y4

2

A A A A
U

(c* ,l)

~12!

is equal to 0. Note that the functions are evaluated at
peak location, here denoted byc* . Dai(l) is our modified
version of the Evans function and for this to be used asD(l)
we need to prove its analyticity inl. The Airy functions are
entire functions, i.e., functions that are analytic everywh
in C, and the variablesz6 are analytic functions ofl. The
initial conditions for numerical integration fromc1 and c2

to c* are based upon the asymptotic solutionsYk
` , thus they
r,
e

e

e

are analytic. Consequently, the solutionsYi
1 ( i 51,2) andYj

2

( j 53,4) are also analytic inl. The determinant is an alge
braic operation; therefore,Dai(l) is analytic inl.

To prove stability, we need to evaluateDai(l) along a
closed path enclosing all the lower half-plane ofl @or
equivalently the upper half-plane, since the symmetry of
~5! only allows sets of eigenvalues of the kind$l,2l,l* ,
2l* %]. However, in practice, we have chosen the contour
a semicircle of large radius~typically ;10) closed by a line
parallel to the real axis but very close to it~at distance;5
31025). Numerical limitations are thatDai(l) appears cha-
otic for large values ofulu. The number of 0’s ofDai(l)
inside the semicircle was determined by the argument p
ciple. For all profiles studied, the result was that no 0’s w
found, so confirming the stability of the self-bending so
tons.

The defined Evans function was also useful for finding
quasilocalized solutions of Eq.~5!, for real l. One trivial
example of those solutions is the profileF(c), which is the
eigenfunction corresponding to the eigenvaluel50. The
zero eigenvalue is confirmed to have algebraic multiplic
equal to 4 as happens in the diffusionless case. Other s
tions for lÞ0, if present, are the counterpart of intern
modes of the diffusionless case. We have sought for them
l on the real axis. Asl is real,z6 is also real and we may
replace Ai21 and Ai1 in Eq. ~11! by the real function Bi. As
anticipated, whenever such eigenfunctions exist, they co
spond tolPS1. For g small, such solutions do exist fo
peak amplitudes greater than;1.3, as in the diffusionless
case. Asg increases and the peak amplitude is maintain
those localized solutions cease to exist. The explanatio
thatS1 is narrowing asg increases. The latter was confirme
by evaluating the value ofl that makesz6(c2)50 where
0-5
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M. FACÃO AND D. F. PARKER PHYSICAL REVIEW E68, 016610 ~2003!
c2 is in the right tail of the peak. Moreover,S1 tends to the
continuous spectrum gap (2v,v) of the diffusionless case
asg tends to 0.

Figure 6 shows the localized eigenfunctions found fo
beam profile withFmax54.0 andg50.03. They are qualita
tively similar to those presented in Fig. 4 for the rectiline
beams, but with noticeable asymmetry. Increasingg but
maintainingFmax causes the eigenfunction corresponding
l50.76 to cease to exist. For even largerg, we were unable
to find a solution for the ODE definingF, suggesting that
there is no localized self-similar solution.

VI. NUMERICAL SIMULATION OF THE PARTIAL
DIFFERENTIAL EQUATION

To complement our stability analysis we used the co
puted beam profiles as initial conditions for numerical in
gration of evolution equation~1!. We used a pseudospectr
method based on Fornberg and Whitham@19#.

The numerical simulations forg50 confirmed the stabil-
ity of the symmetric beams. An initial condition consisting
a self-similar profile plus a small perturbation causes re
justment to a nearby beam shape with some emission
radiation. However, as is typical for other nonintegrable g
eralized NLS models@15,20#, the consequent propagatio

FIG. 6. Eigenfunctions corresponding tol50.76 andl50.44
for a beam profile with amplitudeFmax54.0 andg50.03.
01661
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exhibits persistent amplitude oscillations whenever the
derlying self-similar beam possesses an internal mode.

The numerical simulations also confirmed the stability
the self-bending beams. We have used the correspon
beam profiles as initial conditions in a way that spans
studied ranges ofg and peak amplitude. In all cases, we ha
observed steady propagation along the predicted parab
trajectory. Moreover, stable propagation arises even w
initial conditions differ from those of a self-similar profile b
small perturbations of three types: a sinusoid multiplying
profile, a multiple of the profile, and a multiple of its firs
derivative.

Analogously to the diffusionless case, the propagation
perturbed beams reveals the existence or absence of loca
modes in their stability spectrum. Thus, we may obse
large persistent oscillations in the propagation of bea
whose spectrum admits localized modes and smaller de
ing oscillations otherwise. The frequency of the decay
oscillations is, in this case, coincident with the limitl2 of
S2b . As regards the characteristic features of solutions to
~5! for lPS2b given above, we may assert also that, wh
perturbed, the self-bending beams withoutinternal modes
relax with amplitude oscillations whose frequency is equa
the lowest frequency of their radiationlike modes. Figu
7~a! shows the peak amplitude evolution of solutions of E
~4! havingFmax;1.0 but scaled by 1.1, for various values

FIG. 7. Peak amplitude evolution for beams scaled by 10% c
cerningg50.03, 0.10, 0.15 and~a! Fmax;1.0, ~b! Fmax;2.0.
0-6
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STABILITY OF SCREENING SOLITONS IN . . . PHYSICAL REVIEW E68, 016610 ~2003!
g. We recall that these profiles have no localized mo
except that corresponding tol50. The frequency of the
amplitude oscillations increases withg as also doesl2. In
fact,l2 is estimated in a way similar tol1, that is, by evalu-
ation of the value ofl that makesz6(c1)50, wherec1 is in
the left tail of the peak. Furthermore,l2 also tends tov asg
tends to 0. Figure 7~a! also shows a noticeable decrease
the amplitude of the oscillation with increasingg. The case
g50.03 of Fig. 7~b! shows the long-lived oscillation whos
frequency coincides with the eigenvalue of the localiz
mode. However, the beams of similar peak amplitude
corresponding to larger diffusion parameter evolve accom
nied by decaying oscillations. We have confirmed that
average beams of those latter cases have no localized m
The frequency of the oscillations is again increasing withg.
ev

ro
y

iv,

B

pt

.

at
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01661
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es.

VII. CONCLUSION

We have proved linear stability for the rectilinear scree
ing solitons and obtained their internal modes. We give
contribution to the stability analysis of the self-bending so
tons, including a discussion of their internal modes. This
based on a modified Evans function that deals w
asymptotic systems given by Airy equations, instead of c
stant coefficient differential equations. The modified Eva
function procedure may be applied to similar stability pro
lems, as is currently being done.
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